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Electromagnetic velocity fields near a conducting slab
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A calculational scheme for the electromagnetic fields of a charge moving at constant velocity parallel to a
flat conducting slab is developed. The results can be evaluated for arbitrary speed of the charge. Comparisons
are made with earlier work that was mostly limited to a low-speed approximation. Both analytic insights and
numerical illustrations of the theory are given.

DOI: 10.1103/PhysReVvE.64.046605 PACS nuni)er03.50.De, 41.20.Gz

. INTRODUCTION p(x,t)=ed(x—h)s(y—vt)(z), (1)

In this paper we develop a complete solution fofde- se Ao
ceptively simple question in electromagnetism. One imag- j(x,)=vyp(x1), ()
ines a charge moving at constant speadoutside the flat i poth h>0 andv>0 independent of time, The con-
face of a conducting slab of thicknedsThe problem is 10 g,cting slab, which is not yet present, will be placed between
determine thée andB fields associated with this steady mo- x=0 andx=—d<0 and will fill the y-z plane. The Fourier
tion, both inside and outside the conductor. This question hag - «torms ofp andj are
attracted several efforts over the last 30 years and some con-

troversy; see the literature survey in REE]. Most authors . , e

have used a perturbative approach in which the speed is as- P(q,w)=j dte'“tf d®x e %p(x,t)

sumed to be suitably small. Only in the paper by Jd2éss

this “low-speed” approximation not made, but he treats a :277e8(w—a.5)e7iqxh 3

line of charge moving perpendicular to its lengénd paral-
lel to the conductor’s surfagenot a point charge.

Here we show how to solve the problem for a point
charge moving at arbitrargbut constant speed. The fields
are expanded in a Fourier series based on two-dimension
wave vectors lying in the plane of the surface. Although
numerical integration is needed for a general evaluation of o 5. 0) 4 (» )/
the fields, the Fourier representation is compact and allows q.@ - —WX plqw)ie
considerable insight by analogies that one can make with the A(q,w) 2 j(q.w)lc,
well known calculation of reflection and transmission of a
light beam by a slab.

. I.n Sec. Il we present our derivation and examiné varouyjith ¢ the vacuum speed of light, and from them the fields
limiting cases:d—», d—0, v—0, and the conductivityr - .- . ~ = e =
becoming nil or infinite. These allow us to make contact withE =~ 1dP + (iw/C)A andB=igxA.
earlier work. We also consider various linear superpositions Flnally_we_ WOUId_ like to transform back to real space. For
of our results, in order to treat drifting lines of charge mov—the electric field this leads to
ing either perpendicular or parallel to their length. For the

j(q,0)=vp(q,0), (4)

here5=v§/. From these one can readily determine the sca-
r and vector potentials in the Lorentz gaugé

L, 0
I¢] =

3
latter case, one has in effect a dc current in a fixed wire E()Z ):_if d°q
parallel to the conductor. From our general solution we find ' (2m)°
then, as expected, that the associated magnetic field is com-
pletely unaffected by the conduct@as long as its dc con- dmele ot
ductivity is not infinite. X e Mg
In Sec. Il several model calculations are described. These |ﬁ|2__8
compare for the magnetic field the unscreened form, the low- c?
speed answer, and our new general results for different 2
choices ofv, d, ando. In particular we show when and how X (@, Qy(1= %), 00). ©6)

the low-speed answer fails asincreases. where S=v/c and the triplet of symbols at the end of the

integrand describe the y, andz components. To proceed,
ll. DERIVATION we now assume for simplicity that is a real-valued con-

Begin with the simpler situation of a charge moving Stant, independent of bothandw=q-v, aznd that the speed
through a homogeneous dielectric. The prescribed trajector t00 slow for Cerenkov radiation, so-13¢>0. Introduce

of constant velocity can be described by the charge and cury’ =1/J1-B% and change integration variables Ep(
rent densities: whereq, =0y, 9,=0y/v', 4,=0d,. Then
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9 1 8 o flected by and transmitted into and through the slab. The
sE(x,t)z—y’(—,—,z—,—) multiple scattering process can be described independently
IX 12 9y 9z for eachQ and w.
3. We can further simplify the calculation if we separate the
f d°q’ 4me gl (x—h) polarization in Eq(12) into s- andp-wave parts. To this end
(2m)?%|q’|? introduce
xexiligyy' (y—vt)]e'? ] Q. .Q
’ sP(Q=| F1,- =Q,,—i15Q,/, (13)
B v'e(x—h,y—vt,z) @) Q Q
[(x=h)2+y'2(y—vt)2+2%]3% 0, -0
) E@(Q):(o,:%, = ye). (14)
The calculation oB may be done similarly to yield Q Q
B(x t)z,éXsE()Z t). (8) One can readily check that each of these is orthogonal to the

“wave vector,” iq.=(*Q,iQ,,iQ,), associated with
We have reproduced these well knoy8 results for the e**eiQwWeiRZ Furthere® lies in the plane of incidence
velocity fields of an isolated single charge to assure th_‘i’defined byx andQ) while & is perpendicular to it. Using

reader that the Fourier space approach can retain all relatiynam as basis vectors for the polarization we have
istic effects.

In order to apply this approach when a conducting slab is
present, we need to rewrite and reinterpret the above equa-
tions. In Eq.(6) the integral ovem, can be done foe an

[FQ,—iQy(1-B%),-iQ,1/Q=ec P +eel, (15

h
arbitrary[4], complex-valued function ob=qyv to yield where
Q,)Q;
B, d?Q 2me . S e,=1, e=p22" (16)
D(x,t =—if — e QU elQ2(1Q sgn(x—h), L 2
(X,0) 2m? O (iQ sgrix—h) Q
Qy(l—,st),QZ)ef 6|xfh\’ (9) We have chosen the definitions of tElg’s so that thee's are

real, dimensionless, and independent of medium. With the
ecompositior{15) one can use the optics analogy to be sure
hat there will be no mixing of these polarizations through
the multiple scattering process.

The full calculation of the velocity field has now been
reduced to a standard problem in opfib$ We use a match-
ing procedure to solve it. There are three media.Xee0 we
have vacuum withe;=1. For —d<x<0, there is the con-
ductor withe,, which we do not need to describe further yet
[4], except thak, depends only om=Qyv so one can use

anda is to be chosen with positive real pdd]. For 0<x classical(local) optics. Forx<—d, we are back to vacuum

whereD = ¢E is the displacement field and we have change
from (g, ,q,) to (Qy,Q,), which are the components of the

two-dimensional vecto® in they-z plane. The quantityjis
determined by

2
52=Q§(1—/328)+Q§=|Q|2—%s(m), (10

<h we can then rewrite Eq9) as with eg=¢e,=1. Then Eq.(11) is generalized to
2
- - d’Q . 2 Q - _ B e
D(X,t):fﬁDinc(X;Q;w)eXF{i(ny—'—sz_wt)]! D(X’t)_f—(277)2Dt°ta|(x'Q'w_va)ele(y Ut)eleZ’
an
wherew=Qyv and with Do/ (27 efalh) given in the three regions <Ox
<h, —d<x<0, x<—d, respectively, by
N 2me *6h N _ N _ R _ N _
Dinc(X;Q,0)= ?e ep[ e P e+ ePhe” X+ e e e +r el e,

_ (18a
Xe"(—Q,—iQ,(1-B%),—iQ,).

6, PSPt PSP Qe+ ] 1 g 4959 602

(12 B
. . . +a e g™ Qi+ 18b
When the conducting slab is in place we interpret Ed4) 2 ] (18
and(12) as representing a sum of transverse, electromagnetic (P) a0a(x+d) >(s) AQa(x+d)
partial waves incident on the slab. These waves will be re- Eplpe 583t egtse e s, (189
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Before matching these partial waves acrossO and x

=—d to determine the’s, t's, and a’s, we write out the
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wheret=(1-T)/(1+T) andt=2I'/(1+T) are the reflec-
tion and transmission amplitudes of the 2/1 interface and

corresponding magnetic field, which follows from Faraday’s

law: i (w/c)eB=iqxD. Sinceqx &P« and vice versa,

we readily find

2
I§(>Z,t)—f (2 Q)2 total X; Q, 0= Q v)ele(y*vt)eiQZz,
(19

with étota|/(27-re,8ie*61h) given in the three regions<0x
<h, —d<x<0, x<—d, respectively, by

b &[8(5) eX—r 5 e~ 4 by Q—[s(p) eQux
PQe; Q1
—ree :‘ilx], (208
bpg[a(p g(f)ze@x_ o® g(s)zefaz(xw)]
Qe; ' -
QZ Q) (p) D5 (P gQa(x+d)
=[a¥ Deihee 1, (20b
2
b, &t 5690t d) &, & (P,eQ0 D (200
P Qes 3
where
bp=Q,/Q, be=1. (21)

For the matching process we require continuity for the nor-
mal components dd andB and for the parallel components

- I . . %.B0) —
of E=D/e andH=B. Several of these matching equations X- Dgot)al_

81Q2
r,= (23
- 82Q1
Q
Fs: . (24)
Q2

Equations(16)—(24) represent the complete solution. To
clarify its content we now consider various special cases and
limits. In these we shall assum@#<1, which allows us to
set alwaysQ;=Q;—Q= \/Qy2+ QZZ. For the low-speed re-
sults that have been found befd@—9] we need to letv
—0 in Egs.(18)—(20). This leads one to consider howy
behaves in the limitv— 0. The conventional choice uses

dmio,

sy=1+——, (25)

whereo, is the(finite) dc conductivity. The modifications of

o at higher frequencies have not been considered relevant,
but of course could be included in numerical work. With the
form (25 andv—0, one haQQ,—Q andI's—1 while I',

—0. Ignoringes compared tce,, but keeping bottbg and

b,, we obtain the following low-speed formul§$0]

tota|(X Q)e'Qy(Y v giQzZ (26)

with x-D{9), given in the three regions<0x, —d<x<O0,
andx< —d, respectively, by

sgnh—x)e
—2mex | 26 AN(e¥—e Q2D (1-e72Q])

~Qlx—h| 4 g=Q(x+h)

>

are redundant and we end up with just enough to solve for 0

the unknowns. The normalizations in E¢58) and(20) have

(27)

been chosen so that the forms of the solutions are the same

for sandp waves. We findwhenes=¢;)

a,=te_62da+ t=’ce_62da+
_Adasn) o d-e

2

z-BO=27eBx{ Z%th(eQx— e~ QUxt2d)y (1 —=2Qd) 4 “ -

2
Q: e~ Qh—x).
[ @

and

)2 Ec?t)al(x Q)G'Qy(y vt)e'QZZ (28)

BO(x,t)= f

with z- B{%,, given in the three regions<0x, —d<x<0, x
< —d, respectively, by

2

Sgr(h — X) e lefh‘ + &efQ()H'h)
QZ

Q(h—x) (29
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For simplicity we have written out explicitly here only a Vop

single field component. £2=1+72i O.h (34)
Sincee,—, EQ. (27) shows that there is nEf(O) for x Y

<0 and noD{ for x< —d. Forx>0 we have thestatio  \yith

image potential result. While onlp waves make a signifi-

cant contribution toD(® and E(®, the magnetic field has Vop=2m0,h, (35)
important contributions from both polarizations. It is the

s-wave part that allows® to extend beyond the slab. Note while for 62

that inx< —d, B(®) has no dependence of, d, or even the »

location of the conducting slg8,9]. This remarkable behav- Q,= ( Q22 & L) (36)
ior is explained in the optics language by saying thatiufor 2 h ves

—0, theswaves suffer no reflection and the amplitude of the

partial wave belowx=—d is set by e QNe~QxdgQx+d) — with
which reduces t@ %" sinceQ,—Q.

As an aside, note that for a perfect conductor one replaces P —
Eqg. (25) with 82=1—(w§/w2), wherew,, is a plasma fre- 2mogh
quency. Then Q,—(Q%+1/6%) with s=cl/w,, the . Y - .
frequency-independent penetration depth. In this case eve Ince vosop=C*, one of these characteristic speeds will

the s waves will be(partially) reflected by the slab and the dlways be much greater than A typical value of 14,

L . : or a good conductor is 1Qu{cm, which implies
gladg/;?etlc field on the far side will be attenuated by at Ieaqurcro~6><1017/s. Then for most choices df, vy, c, and

Coming back to the good, but not perfect, conductor cas we need only be concerned with the relative size aind

it is of interest to compare the low-speed fields with thevos- TO show in detail hovB® changes fov = v requires
unscreened velocity fields. Settimg=1, we have for alix nur_nerlcal work. However, Eq37) is useful for a qualltatlYe
when 2<1 e§t|mate of V\(hen effects due to eddy currents and Lenz’s law
' will become importanf11].
Another set of limiting cases come from the variation of
the slab thickness. Far— <, we ignorea _ andt in Eq.(22)

C2

(37)

2

5(”)()2,t)=2weJ' d Q2eiQy(y*ut)einzelex—hl

(217) and replace
Qy Qz) 2 r-1
X| — — ==, —= —_— — =
d2Q If we further letv — 0, our results become equivalent to Boy-
§(u)(§,t):277913f 2eiQy(y—vt)einZe—le—hl er’s,[7,10] but expressed in Fourier space. The lighit:0 is
(2m) more subtle since we still want the metal to have an effect.
Q, One way to take the limit is to requi®,d—0 andI"—0.

X | =i

,0,sgrﬁh—x)). (31 This occurs if we holdy fixed and letd and 16, become
small. Then one needs to carefully expand the quantities in

Eq. (22) ast,e”?2'—1. The final results are controlled by
the size ofQ,d/I" for which we find under these conditions

Q

If we specialize toz=0 andy=vut (i.e., directly under the
drifting charge, then at the top and below the bottom surface
of the conductor we havig]

— v
de/rpﬁzifg, v1p=2m0d
p@pw={2 *~° (32 ’
x X 0, x=-—d, 0
— v
Q,d/T— — 2i U_Ey’ vis=C%2mo.d. (39
32, x=0 1s
BB = (33 .
z s 1/2, x=-d, If v is small compared to both,, andv,s, thent,—0 and

ts— 1 and our results reduce to those of Fuirdyl1,13.

The generak dependence is further discussed in Sec. I, but We end this section by examining various superpositions

we emphasize here that for bd#") andB(© it is algebraic of our results. The fields we have calculated represent a lin-

after the integrals ove®. ear response, so linear superposition should be justified and
Now consider how one moves out of the low-speed limit.can be attempted in several ways. First consider charges

This occurs in several ways, depending on which parametenoving alongy. In Eq. (12) replace 8(y—vt) with &(y

is examined. Foe, we write —y’'—vt) and integrate ovey’'. Then
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A -
gj dy’p(x,t)=Nd(x—h)&(z)=p’, (40) s

A N N -
Ef dy’j(x,t)=Avyds(x—h)s(z)=]". (41

These new distributions represent a line of chakgih lin-
ear densityh) moving parallel to itself. There is no time

dependence in eithgi’ or f/, SO we expect separate elec-

trostatic and magnetostatic solutions forand B. Applying
they’ integration to our formal results depends on

/B,

05 |

|” dayexdioyy-y —ov1-2may, @2

0.0

which removes the time dependence and impgs-+|Q,|,

Fp—>0, I'.—1. Incorporating these changes into E(}6)— FIG. 1. Thezcomponent of the magnetic field directly under the

drifting charge versus depth into and below the conducting slab.

(22), we find The various thick lines show the low-speed approximaggh for
» d different choices of slab thickness, while the single thin line is the
S0 ) — Q. iQ,z _ _ ()= i
B'(Xx,t)=27\pB e'QzZexd |Qz||X h|] unscreened;” =B,(ext). All the curves are normalized B,
— 27 =pBe/h?, and the data on the left side have been multiplied by a
. factor of 5.

o ) . ) sheet. This could be done either by integrating E46) and
which is theAstatlc, unscreenéfield due to line of current  (41) over z/, or by integrating Eqs(44) and (45) overy’.
I=v\ alongy. This may be confirmed by superposing via aThe final source distribution would be the same in both
y' integral the unscreened field of EQ1). The form of D’  cases: a uniform charge sheet at heighirifting at velocity
is more complicated because the electrostatic field i$y. However such a double superposition of the magnetic
screened. The results follow from insertingr8(Q,)\/e  fields we have found depends on whether yheor z inte-

into the integrand of Eq(26). gral is done firs{7]. The mathematical origin of the ambi-
We also can build a line of charge by replacing in E4$.  guity can be seen in Eq29), where factors on,/QZ and
and(2) §(z) with 5(z—2") and integrating ovez”. Then 2/Q? appear. These do not have a unique limitQs0.
N One needs to know wheth@y, or Q, goes to zero first. We
_J' dz”p(i,t):)\5(x—h)é(y—vt), (44) do not see a clear way to resolve this ambiguity. One prob-
e ably needs to worry aQ— 0 about charges and/or currents

at infinity (in the y-z plane. Note that similar puzzles can

N 2 A arise when one tries to integrate tBdield over bothz andt
o | dZi(x=rvys(x—h)s(y—ut), (49 113], since for a constant speddit’ ~ [dy'/v.
which are the distributions for a line of charge moving per- Ill. MODEL CALCULATIONS

pendicular to itself. Note that a time dependence remains in

Egs. (44) and (45). In Fh(i low-speed limitD" due to E_qs' plicit. The integrals can be done explicitly for both the un-
(44) and(45) agrees wittD" due to Eqs(40) and(41), aside  screened and low-speed limits; see RdB-9] for their
from a change of axis labels. HowevBf is quite different form. For arbitrary speed analytic integration does not
from B’. One needs to inserti25(Q,)\/e into Eq.(19), or ~ seem to be possible so we turn to numerical calculations,
in the low-speed limit into Eq(28). Using the latter, we find focusing onB,(x,y,z=0.).
B’=—BD/ so the magnetic field is screened just as effi- Begin with an interpolation between the values noted in
ciently as the displacement field. This occurs because bothd. (33). Fory=ut, z=0, andx<h, B{" = ge/(h—x)? and
are here carried only bp-waves. We also remark th&, B may be computed from Eq29). In Fig. 1 we compare
appears to agree with Jones’ general rggjltOne needs to these two results versusat fixedh for several choices ad.
replace ourQ, with w/v, let d—, and identify his—a  Consistent with Eq(33), B{”) falls from larger to smaller
with our I" j+ 1. than B{") as one moves from the top to the bottom of the
It is not unreasonable th& andB” differ so much since conducting slab. Belowk=—d, B{®=3B{". For d—=,
the motions of the lines of charge in Eqdl) and (45 are  B{¥=2B{") throughout the conductofalong the liney
quite distinct. More perplexing puzzles arise if we try a fur- =vt, z=0). These results depend ¢h only through the
ther superposition of line charges to create a drifting chargerefactor and are independent of,. They represent the

So far our analysis has usually left tig@ integrals im-
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B 10 -'
0.25 "‘ V/V(Js =05
[ ---- Wy, =2
J‘ ‘H ——-viv =8
0.20 08 | /! \\\ V/Vos =32 g
i 9 ViV, >0
mE 0.15 |
~
m

0.10 |

0.05 |

0 g .
vt’h -15 -10 -5 0

5
vt’h

FIG. 2. Thezcomponent of the magnetic field at a fixed location  FIG. 3. Thez component of the magnetic field at the same
versus time. The solid curve is the unscreened result; the longebservation point as in Fig. 2 versus time. The different thick
dashed curve the low-speed result; and the short-dashed curve tberves are labeled by the valueswf o with v,s/c=10"%. The
general result withv/v,s=2 anduv,s/c=10"* The observation single thin line is the low-speed res®t” . Its maximum value is
point is on the bottom of a slab of thickneds-h. All the curves  used to normalize all the curves.
are normalized td®,= Be/h?.

N 2e (z,0h—x)
maximum value thaB, can reach fovt+y, if g2<1. B(X,0=0)=—————".
In Fig. 2 this last point is illustrated by plotting, for € (h=x)°+z

fixed x=—d, y=0, z=0 versusvt. At t=0 the charge is

directly above the observation point. Note that the un-We used this invariant as a check on our numerical accuracy.
screened and low-speed fields are symmetric functiorts of ~ To more fully show how the general result evolves away
For large|t| the former decays d$| 2, while the latter de-  from the low-speed limit, we present in Fig. 3 results for a
cays aglt| 2. The new result is the asymmetric curve with range ofv/v o values. There is a smooth qualitative trend in
vlv,s=2. Note that the generdB, rises and falls more the shape of the curves, but the integrated area under each is
slowly thanB{”) and that its maximum value is less. the same. We have also examined similar sets of curves for

A remarkable property of all the results is that different, fixed observation points. Farplaced further be-
J7..dt B,(x,t) is invariant; i.e., the area under each of thelow the charge’s path, the sensitivity tdv o5 increases. In
curves in Fig. 2 is the sanj&]. To understand this note that the other direction, say when the observation point is on the
top face of the conductor, bot&®) and B, have extended
regions of negative values, before rising quickly to values
larger than the always positi&") . For increasing /v o< the
negative values oB, for t<<0 move toward positive values
while the negative values fae>0 become even more nega-

i . . tive and longer ranged.
The field at zero frequency is determined by the sources al To summarize we have shown in this paper how to obtain

zero frequency. Going back to Edd) and(2) we have a full solution to a simple electromagnetism problem. Our

solution requires no limitations on the speed of the drifting
) e charge. Although the characteristic spee@§,vop,v1§,v1p
p(X,w=0)=—38(x—h)(2), (47 have long been known to be relevaf$,11,14 ours is the
v first theory that allows explicit calculations to be done for
exceeding some of these. It remains for future work to de-
f()?,w:O)zeg/é(x— h)&(z). (48) termine whether the results found here can help resolve the
controversy about a possible classical explanation of the
Bohm-Aharonov effecf1].

(49

Jx dtB(x,t) =B(X,w=0). (46)

The response to these sources is determined by separate elec-

trostatic and magnetostatic calculations. B¢k, w=0), the ACKNOWLEDGMENTS
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