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Electromagnetic velocity fields near a conducting slab
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Physics Department, Indiana University, Bloomington, Indiana 47405
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A calculational scheme for the electromagnetic fields of a charge moving at constant velocity parallel to a
flat conducting slab is developed. The results can be evaluated for arbitrary speed of the charge. Comparisons
are made with earlier work that was mostly limited to a low-speed approximation. Both analytic insights and
numerical illustrations of the theory are given.
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I. INTRODUCTION

In this paper we develop a complete solution for a~de-
ceptively! simple question in electromagnetism. One ima
ines a chargee moving at constant speedv outside the flat
face of a conducting slab of thicknessd. The problem is to
determine theEW andBW fields associated with this steady m
tion, both inside and outside the conductor. This question
attracted several efforts over the last 30 years and some
troversy; see the literature survey in Ref.@1#. Most authors
have used a perturbative approach in which the speed is
sumed to be suitably small. Only in the paper by Jones@2# is
this ‘‘low-speed’’ approximation not made, but he treats
line of charge moving perpendicular to its length~and paral-
lel to the conductor’s surface!, not a point charge.

Here we show how to solve the problem for a po
charge moving at arbitrary~but constant! speed. The fields
are expanded in a Fourier series based on two-dimensi
wave vectors lying in the plane of the surface. Althou
numerical integration is needed for a general evaluation
the fields, the Fourier representation is compact and all
considerable insight by analogies that one can make with
well known calculation of reflection and transmission of
light beam by a slab.

In Sec. II we present our derivation and examine vario
limiting cases:d→`, d→0, v→0, and the conductivitys
becoming nil or infinite. These allow us to make contact w
earlier work. We also consider various linear superpositi
of our results, in order to treat drifting lines of charge mo
ing either perpendicular or parallel to their length. For t
latter case, one has in effect a dc current in a fixed w
parallel to the conductor. From our general solution we fi
then, as expected, that the associated magnetic field is c
pletely unaffected by the conductor~as long as its dc con
ductivity is not infinite!.

In Sec. III several model calculations are described. Th
compare for the magnetic field the unscreened form, the l
speed answer, and our new general results for diffe
choices ofv, d, ands. In particular we show when and how
the low-speed answer fails asv increases.

II. DERIVATION

Begin with the simpler situation of a charge movin
through a homogeneous dielectric. The prescribed trajec
of constant velocity can be described by the charge and
rent densities:
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r~xW ,t !5ed~x2h!d~y2vt !d~z!, ~1!

jW~xW ,t !5v ŷr~xW ,t !, ~2!

with both h.0 andv.0 independent of time,t. The con-
ducting slab, which is not yet present, will be placed betwe
x50 andx52d,0 and will fill the y-z plane. The Fourier
transforms ofr and jW are

r~qW ,v!5E dt eivtE d3x e2 iqW •xWr~xW ,t !

52ped~v2qW •vW !e2 iqxh ~3!

jW~qW ,v!5vW r~qW ,v!, ~4!

wherevW 5v ŷ. From these one can readily determine the s
lar and vector potentials in the Lorentz gauge@3#,

F~qW ,v!

AW ~qW ,v!
J 5

4p

uqW u22
v2

c2
«

3H r~qW ,v!/«

jW~qW ,v!/c,
~5!

with c the vacuum speed of light, and from them the fiel
EW 52 iqW F1( iv/c)AW andBW 5 iqW 3AW .

Finally we would like to transform back to real space. F
the electric field this leads to

EW ~xW ,t !52 i E d3q

~2p!3

3
4pe/«

uqW u22
v2

c2
«

eiqx(x2h)eiqy(y2vt)eiqzz

3„qx ,qy~12b2«!,qz…, ~6!

whereb5v/c and the triplet of symbols at the end of th
integrand describe thex, y, andz components. To proceed
we now assume for simplicity that« is a real-valued con-
stant, independent of bothqW andv5qW •vW , and that the speed
is too slow for Cerenkov radiation, so 12b2«.0. Introduce
g851/A12b2« and change integration variables toqW 8
whereqx85qx , qy85qy /g8, qz85qz . Then
©2001 The American Physical Society05-1
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«EW ~xW ,t !52g8S ]

]x
,

1

g82

]

]y
,

]

]zD
3E d3q8

~2p!3

4pe

uqW 8u2
eiqx8(x2h)

3exp@ iqy8g8~y2vt !#eiqz8z

5
g8e~x2h,y2vt,z!

@~x2h!21g82~y2vt !21z2#3/2
. ~7!

The calculation ofBW may be done similarly to yield

BW ~xW ,t !5bW 3«EW ~xW ,t !. ~8!

We have reproduced these well known@3# results for the
velocity fields of an isolated single charge to assure
reader that the Fourier space approach can retain all rel
istic effects.

In order to apply this approach when a conducting slab
present, we need to rewrite and reinterpret the above e
tions. In Eq.~6! the integral overqx can be done for« an
arbitrary @4#, complex-valued function ofv5qyv to yield

D~xW ,t !52 i E d2Q

~2p!2

2pe

Q̄
eiQy(y2vt)eiQzz

„iQ̄ sgn~x2h!,

Qy~12b2«!,Qz…e
2Q̄ux2hu, ~9!

whereDW 5«EW is the displacement field and we have chang
from (qy ,qz) to (Qy ,Qz), which are the components of th
two-dimensional vectorQ in they-z plane. The quantityQ̄ is
determined by

Q̄25Qy
2~12b2«!1Qz

25uQu22
v2

c2
«~v!, ~10!

and Q̄ is to be chosen with positive real part@4#. For 0,x
,h we can then rewrite Eq.~9! as

DW ~xW ,t !5E d2Q

~2p!2
DW inc~x;Q,v!exp@ i ~Qyy1Qzz2vt !#,

~11!

wherev5Qyv and

DW inc~x;Q,v!5S 2pe

Q̄
e2Q̄hD

3e1Q̄x
„2Q̄,2 iQy~12b2«!,2 iQz….

~12!

When the conducting slab is in place we interpret Eqs.~11!
and~12! as representing a sum of transverse, electromagn
partial waves incident on the slab. These waves will be
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flected by and transmitted into and through the slab. T
multiple scattering process can be described independe
for eachQ andv.

We can further simplify the calculation if we separate t
polarization in Eq.~12! into s- andp-wave parts. To this end
introduce

«W 6
(p)~Q!5S 71,2

iQ̄

Q2
Qy ,2 i

Q̄

Q2
QzD , ~13!

«W 6
(s)~Q!5S 0,

iQz

Q̄
«,

2 iQy

Q̄
« D . ~14!

One can readily check that each of these is orthogonal to
‘‘wave vector,’’ iqW 65(6Q̄,iQy ,iQz), associated with
e6Q̄xeiQyyeiQzz. Further«W (p) lies in the plane of incidence
~defined byx̂ andQ) while «W (s) is perpendicular to it. Using
them as basis vectors for the polarization we have

@7Q̄,2 iQy~12b2«!,2 iQz#/Q̄5ep«W 6
(p)1es«W 6

(s), ~15!

where

ep51, es5b2
QyQz

Q2
. ~16!

We have chosen the definitions of the«W 6’s so that thee’s are
real, dimensionless, and independent of medium. With
decomposition~15! one can use the optics analogy to be su
that there will be no mixing of these polarizations throu
the multiple scattering process.

The full calculation of the velocity field has now bee
reduced to a standard problem in optics@5#. We use a match-
ing procedure to solve it. There are three media. Forx.0 we
have vacuum with«151. For 2d,x,0, there is the con-
ductor with«2, which we do not need to describe further y
@4#, except that«2 depends only onv5Qyv so one can use
classical~local! optics. Forx,2d, we are back to vacuum
with «35«151. Then Eq.~11! is generalized to

DW ~xW ,t !5E d2Q

~2p!2
DW total~x;Q,v5Qyv !eiQy(y2vt)eiQzz,

~17!

with DW total/(2pe e2Q̄1h) given in the three regions 0,x
,h, 2d,x,0, x,2d, respectively, by

ep@«W 1,1
(p) eQ̄1x1r p«W 2,1

(p) e2Q̄1x#1es@«W 1,1
(s) eQ̄1x1r s«W 2,1

(s) e2Q̄1x#,
~18a!

ep@a1
(p)«W 1,2

(p) eQ̄2x1a2
(p)«W 2,2

(p) e2Q̄2(x1d)#1es@a1
(s)«W 1,2

(s) eQ̄2x

1a2
(s)«W 2,2

(s) e2Q̄2(x1d)#, ~18b!

eptp«1,3
(p) eQ̄3(x1d)1ests«W 1,3

(s) eQ̄3(x1d). ~18c!
5-2



y’s

or
s
ns
fo

a

o
and

f
ant,

he

ELECTROMAGNETIC VELOCITY FIELDS NEAR A . . . PHYSICAL REVIEW E64 046605
Before matching these partial waves acrossx50 and x
52d to determine ther ’s, t ’s, and a ’s, we write out the
corresponding magnetic field, which follows from Farada
law: i (v/c)«BW 5 iqW 3DW . SinceqW 3«W (p)}«W (s) and vice versa,
we readily find

BW ~xW ,t !5E d2Q

~2p!2
BW total~x;Q,v5Qyv !eiQy(y2vt)eiQzz,

~19!

with BW total/(2peb ie2Q̄1h) given in the three regions 0,x
,h, 2d,x,0, x,2d, respectively, by

bp

Q̄1

Q«1
@«W 1,1

(s) eQ̄1x2r p«W 2,1
(s) e2Q̄1x#1bs

Qz

Q̄1

@«W 1,1
(p) eQ̄1x

2r s«W 2,1
2Q̄1x

#, ~20a!

bp

Q̄2

Q«2
@a1

(p)«W 1,2
(s) eQ̄2x2a2

(p)«W 2,2
(s) e2Q̄2(x1d)#

1bs

Qz

Q̄2

@a1
(s)«W 1,2

(p) 2a2
(s)«W 1,2

(p) eQ̄2(x1d)#, ~20b!

bp

Q̄3

Q«3
tp«W 1,3

(s) eQ̄3(x1d)1bs

Qz

Q̄3

ts«W 1,3
(p) eQ̄3(x1d), ~20c!

where

bp5Qy /Q, bs51. ~21!

For the matching process we require continuity for the n
mal components ofDW andBW and for the parallel component
of EW 5DW /« andHW 5BW . Several of these matching equatio
are redundant and we end up with just enough to solve
the unknowns. The normalizations in Eqs.~18! and~20! have
been chosen so that the forms of the solutions are the s
for s andp waves. We find~when«35«1)

a25re2Q̄2da1 , t5te2Q̄2da1 ,

a15
2/~11G!

12r2e22Q̄2d
, r 52r

~12e22Q̄d!

~12r2e22Q̄d!
, ~22!
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wherer5(12G)/(11G) and t52G/(11G) are the reflec-
tion and transmission amplitudes of the 2/1 interface and

Gp5
«1Q̄2

«2Q̄1

, ~23!

Gs5
Q̄1

Q̄2

. ~24!

Equations~16!–~24! represent the complete solution. T
clarify its content we now consider various special cases
limits. In these we shall assumeb2!1, which allows us to
set alwaysQ̄15Q̄3→Q5AQy

21Qz
2. For the low-speed re-

sults that have been found before@6–9# we need to letv
→0 in Eqs.~18!–~20!. This leads one to consider how«2
behaves in the limitv→0. The conventional choice uses

«2511
4p iso

v
, ~25!

whereso is the~finite! dc conductivity. The modifications o
s at higher frequencies have not been considered relev
but of course could be included in numerical work. With t
form ~25! and v→0, one hasQ̄2→Q and Gs→1 while Gp
→0. Ignoringes compared toep , but keeping bothbs and
bp , we obtain the following low-speed formulas@10#

DW (0)~xW ,t !5E d2Q

~2p!2
DW total

(0) ~x;Q!eiQy(y2vt)eiQzz, ~26!

with x̂•DW total
(0) given in the three regions 0,x, 2d,x,0,

andx,2d, respectively, by

x̂•DW total
(0) 522pe3H sgn~h2x!e2Qux2hu1e2Q(x1h)

2e2Qh~eQx2e2Q(x12d)!/~12e22Qd!

0
~27!

and

BW (0)~xW ,t !5E d2Q

~2p!2
BW total

(0) ~x;Q!eiQy(y2vt)eiQzz, ~28!

with ẑ•BW total
(0) given in the three regions 0,x, 2d,x,0, x

,2d, respectively, by
ẑ•BW (0)52peb35
sgn~h2x! e2Qux2hu1

Qy
2

Q2
e2Q(x1h)

2
Qy

2

Q2
e2Qh~eQx2e2Q(x12d)!/~12e22Qd!1

Qz
2

Q2
e2Q(h2x)

Qz
2

Q2
e2Q(h2x).

~29!
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W. L. SCHAICH PHYSICAL REVIEW E 64 046605
For simplicity we have written out explicitly here only
single field component.

Since«2→`, Eq. ~27! shows that there is noEx
(0) for x

,0 and noDx
(0) for x,2d. For x.0 we have the~static!

image potential result. While onlyp waves make a signifi-
cant contribution toDW (0) and EW (0), the magnetic field has
important contributions from both polarizations. It is th
s-wave part that allowsBW (0) to extend beyond the slab. Not
that inx,2d, BW (0) has no dependence onso , d, or even the
location of the conducting slab@8,9#. This remarkable behav
ior is explained in the optics language by saying that fov
→0, thes waves suffer no reflection and the amplitude of t
partial wave belowx52d is set by e2Qhe2Q̄2deQ(x1d),
which reduces toe2Q(h2x) sinceQ̄2→Q.

As an aside, note that for a perfect conductor one repla
Eq. ~25! with «2512(vp

2/v2), wherevp is a plasma fre-

quency. Then Q̄2→(Q211/d2)1/2 with d5c/vp , the
frequency-independent penetration depth. In this case e
the s waves will be~partially! reflected by the slab and th
magnetic field on the far side will be attenuated by at le
e2d/d.

Coming back to the good, but not perfect, conductor ca
it is of interest to compare the low-speed fields with t
unscreened velocity fields. Setting«251, we have for allxW
whenb2!1,

DW (u)~xW ,t !52peE d2Q

~2p!2
eiQy(y2vt)eiQzze2Qux2hu

3S 2sgn~h2x!,2 i
Qy

Q
,2 i

Qz

Q D , ~30!

BW (u)~xW ,t !52pebE d2Q

~2p!2
eiQy(y2vt)eiQzze2Qux2hu

3S 2 i
Qz

Q
,0,sgn~h2x! D . ~31!

If we specialize toz50 andy5vt ~i.e., directly under the
drifting charge!, then at the top and below the bottom surfa
of the conductor we have@8#

Dx
(0)/Dx

(u)5H 2, x50

0, x<2d,
~32!

Bz
(0)/Bz

(u)5H 3/2, x50

1/2, x<2d,
~33!

The generalx dependence is further discussed in Sec. III,
we emphasize here that for bothB(u) andB(0) it is algebraic
after the integrals overQ.

Now consider how one moves out of the low-speed lim
This occurs in several ways, depending on which param
is examined. For«2 we write
04660
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«25112i
vop /v
Qyh

~34!

with

vop52psoh, ~35!

while for Q̄2

Q̄25S Q222i
Qy

h

v
vos

D 1/2

~36!

with

vos5
c2

2psoh
. ~37!

Since vosvop5c2, one of these characteristic speeds w
always be much greater thanv. A typical value of 1/so
for a good conductor is 10mV cm, which implies
2pso;631017/s. Then for most choices ofh, vop@c, and
we need only be concerned with the relative size ofv and

vos . To show in detail howBW (0) changes forv*vos requires
numerical work. However, Eq.~37! is useful for a qualitative
estimate of when effects due to eddy currents and Lenz’s
will become important@11#.

Another set of limiting cases come from the variation
the slab thickness. Ford→`, we ignorea2 andt in Eq. ~22!
and replace

a1→ 2

11G
, r→G21

G11
. ~38!

If we further letv→0, our results become equivalent to Bo
er’s, @7,10# but expressed in Fourier space. The limitd→0 is
more subtle since we still want the metal to have an effe
One way to take the limit is to requireQ̄2d→0 andG→0.
This occurs if we holdv fixed and letd and 1/so become
small. Then one needs to carefully expand the quantitie
Eq. ~22! as r,e2Q̄2d→1. The final results are controlled b
the size ofQ̄2d/G for which we find under these condition

Q̄2d/Gp→2i
v1p

v
Q

Qy
, v1p52psod

Q̄2d/Gs→22i
v

v1s

Qy

Q
, v1s5c2/2psod. ~39!

If v is small compared to bothv1p andv1s , thentp→0 and
ts→1 and our results reduce to those of Furry@8,11,12#.

We end this section by examining various superpositio
of our results. The fields we have calculated represent a
ear response, so linear superposition should be justified
can be attempted in several ways. First consider cha
moving along ŷ. In Eq. ~12! replaced(y2vt) with d(y
2y82vt) and integrate overy8. Then
5-4
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l

eE dy8r~xW ,t !5ld~x2h!d~z!5r8, ~40!

l

eE dy8 jW~xW ,t !5lv ŷd~x2h!d~z!5 jW8. ~41!

These new distributions represent a line of charge~with lin-
ear densityl) moving parallel to itself. There is no tim
dependence in eitherr8 or jW 8, so we expect separate ele
trostatic and magnetostatic solutions forEW andBW . Applying
the y8 integration to our formal results depends on

E
2`

`

dy8exp@ iQy~y2y82vt !#52pd~Qy!, ~42!

which removes the time dependence and impliesQ̄j→uQzu,
Gp→0, Gs→1. Incorporating these changes into Eqs.~16!–
~22!, we find

BW 8~xW ,t !52plbE
2`

` dQz

2p
eiQzzexp@2uQzuux2hu#

3@2 isgn~Qz!,0,sgn~h2x!#, ~43!

which is the static, unscreenedBW field due to line of current
I 5vl along ŷ. This may be confirmed by superposing via
y8 integral the unscreened field of Eq.~31!. The form ofDW 8
is more complicated because the electrostatic field
screened. The results follow from inserting 2pd(Qy)l/e
into the integrand of Eq.~26!.

We also can build a line of charge by replacing in Eqs.~1!
and ~2! d(z) with d(z2z9) and integrating overz9. Then

l

eE dz9r~xW ,t !5ld~x2h!d~y2vt !, ~44!

l

eE dz9 jW~xW ,t !5lv ŷd~x2h!d~y2vt !, ~45!

which are the distributions for a line of charge moving p
pendicular to itself. Note that a time dependence remain
Eqs. ~44! and ~45!. In the low-speed limit,DW 9 due to Eqs.
~44! and~45! agrees withDW 8 due to Eqs.~40! and~41!, aside
from a change of axis labels. HoweverBW 9 is quite different
from BW 8. One needs to insert 2pd(Qz)l/e into Eq. ~19!, or
in the low-speed limit into Eq.~28!. Using the latter, we find
Bz952bDx9 so the magnetic field is screened just as e
ciently as the displacement field. This occurs because b
are here carried only byp-waves. We also remark thatBz9
appears to agree with Jones’ general result@2#. One needs to
replace ourQy with v/v, let d→`, and identify his2a
with our Gp11.

It is not unreasonable thatBW 8 andBW 9 differ so much since
the motions of the lines of charge in Eqs.~41! and ~45! are
quite distinct. More perplexing puzzles arise if we try a fu
ther superposition of line charges to create a drifting cha
04660
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sheet. This could be done either by integrating Eqs.~40! and
~41! over z8, or by integrating Eqs.~44! and ~45! over y8.
The final source distribution would be the same in bot
cases: a uniform charge sheet at heighth drifting at velocity

v ŷ. However such a double superposition of the magne
fields we have found depends on whether they8 or z8 inte-
gral is done first@7#. The mathematical origin of the ambi-
guity can be seen in Eq.~29!, where factors ofQy

2/Q2 and
Qz

2/Q2 appear. These do not have a unique limit asQ→0.
One needs to know whetherQy or Qz goes to zero first. We
do not see a clear way to resolve this ambiguity. One pro
ably needs to worry asQ→0 about charges and/or currents
at infinity ~in the y-z plane!. Note that similar puzzles can
arise when one tries to integrate theB field over bothz andt
@13#, since for a constant speed*dt8;*dy8/v.

III. MODEL CALCULATIONS

So far our analysis has usually left theQ integrals im-
plicit. The integrals can be done explicitly for both the un
screened and low-speed limits; see Refs.@6–9# for their
form. For arbitrary speedv analytic integration does not
seem to be possible so we turn to numerical calculation
focusing onBz(x,y,z50,t).

Begin with an interpolation between the values noted
Eq. ~33!. For y5vt, z50, andx,h, Bz

(u)5be/(h2x)2 and
Bz

(0) may be computed from Eq.~29!. In Fig. 1 we compare
these two results versusx at fixedh for several choices ofd.
Consistent with Eq.~33!, Bz

(0) falls from larger to smaller
than Bz

(u) as one moves from the top to the bottom of th
conducting slab. Belowx52d, Bz

(0)5 1
2 Bz

(u) . For d→`,
Bz

(0)5 3
2 Bz

(u) throughout the conductor~along the line y
5vt, z50). These results depend onb only through the
prefactor and are independent ofso . They represent the

FIG. 1. Thez component of the magnetic field directly under the
drifting charge versus depth into and below the conducting sla
The various thick lines show the low-speed approximationBz

(0) for
different choices of slab thickness, while the single thin line is th
unscreenedBz

(u)5Bz(ext). All the curves are normalized toBn

5be/h2, and the data on the left side have been multiplied by
factor of 5.
5-5
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W. L. SCHAICH PHYSICAL REVIEW E 64 046605
maximum value thatBz can reach forvtÞy, if b2!1.
In Fig. 2 this last point is illustrated by plottingBz for

fixed x52d, y50, z50 versusvt. At t50 the charge is
directly above the observation point. Note that the u
screened and low-speed fields are symmetric functions ot.
For largeutu the former decays asutu23, while the latter de-
cays asutu22. The new result is the asymmetric curve wit
v/vos52. Note that the generalBz rises and falls more
slowly thanBz

(0) and that its maximum value is less.
A remarkable property of all the results is tha

*2`
` dt Bz(xW ,t) is invariant; i.e., the area under each of th

curves in Fig. 2 is the same@1#. To understand this note tha

E
2`

`

dtBW ~xW ,t !5BW ~xW ,v50!. ~46!

The field at zero frequency is determined by the sources
zero frequency. Going back to Eqs.~1! and ~2! we have

r~xW ,v50!5
e

v
d~x2h!d~z!, ~47!

jW~xW ,v50!5eŷd~x2h!d~z!. ~48!

The response to these sources is determined by separate
trostatic and magnetostatic calculations. ForBW (xW ,v50), the
sourcejW is a dc line current. Since atv50 the magnetic field
is unaffected by any~except perfect! conductor — see Eq.
~10! — we deduce thatBW (xW ,v50) is independent ofv, and
given by its unscreened value

FIG. 2. Thez component of the magnetic field at a fixed locatio
versus time. The solid curve is the unscreened result; the lo
dashed curve the low-speed result; and the short-dashed curve
general result withv/vos52 and vos /c51024. The observation
point is on the bottom of a slab of thicknessd5h. All the curves
are normalized toBn5be/h2.
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lec-

BW ~xW ,v50!5
2e

c

~z,0,h2x!

~h2x!21z2
. ~49!

We used this invariant as a check on our numerical accur
To more fully show how the general result evolves aw

from the low-speed limit, we present in Fig. 3 results for
range ofv/vos values. There is a smooth qualitative trend
the shape of the curves, but the integrated area under ea
the same. We have also examined similar sets of curves
different, fixed observation points. Forx placed further be-
low the charge’s path, the sensitivity tov/vos increases. In
the other direction, say when the observation point is on
top face of the conductor, bothBz

(0) and Bz have extended
regions of negative values, before rising quickly to valu
larger than the always positiveBz

(u) . For increasingv/vos the
negative values ofBz for t,0 move toward positive value
while the negative values fort.0 become even more nega
tive and longer ranged.

To summarize we have shown in this paper how to obt
a full solution to a simple electromagnetism problem. O
solution requires no limitations on the speed of the drifti
charge. Although the characteristic speedsvos ,vop ,v1s ,v1p
have long been known to be relevant,@6,11,14# ours is the
first theory that allows explicit calculations to be done forv
exceeding some of these. It remains for future work to
termine whether the results found here can help resolve
controversy about a possible classical explanation of
Bohm-Aharonov effect@1#.
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FIG. 3. The z component of the magnetic field at the sam
observation point as in Fig. 2 versus time. The different th
curves are labeled by the values ofv/vos with vos /c51024. The
single thin line is the low-speed resultBz

(0) . Its maximum value is
used to normalize all the curves.
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